
International Journal for Quality Research x(x) x–x

ISSN 1800-6450

PhD student, Ognjen Tomić
Lola institute, Belgrade, Serbia

Article info:

Received xx.xx.xxxx

Accepted xx.xx.xxxx

UDC – xxxxxxxxxx

DOI – 10.18421/IJQRxx.xx-xx

APPLYING MLOPS TO OPTIMIZE

SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET

-LITERATURE REVIEW-

Abstract: In this research, we explore the application of

MLOps (Machine Learning Operations) as a strategy to

optimize software quality assurance in the analytics

application market. Using the MLOps approach, we integrate

tools such as Databricks, Apache Zeppelin, KNIME and

RapidMiner to automate the testing, analysis and optimization

processes of software applications.

This case study illustrates specific examples of the application

of MLOps in the context of analytics applications, but also

provides a basis for understanding the broader range of

opportunities that MLOps provides in improving software

quality assurance in the marketplace. Through this integration

of tools and practices, we explore how MLOps can be a key

factor in achieving competitive advantage and long-term

success in the analytics software market.

Keywords: Machine learning, analystics app., software,

quality assurance

1. Introduction

1.1. The basics of MLOps

MLOps application context refers to the

situations and circumstances in which

MLOps, or machine learning operations

management practices, are applied to ensure

effective implementation, maintenance, and

improvement of machine learning (ML)

systems [1]. MLOps is particularly important

in environments where a diverse range of

machine models are used. This context

includes situations where image recognition,

natural language processing or regression

models are present, with the need to manage

their diversity and complexity. In software

development, MLOps is applied to integrate

machine learning development with standard

software processes. This includes version

control, code management, testing and

implementation. Situations where it is

necessary to quickly adjust models or

introduce new iterations require MLOps

practices. This is especially true in areas

where data changes frequently or where it is

necessary to respond quickly to new

requirements. MLOps is crucial in sectors

where high standards are set for data security

and regulatory compliance [2]. Applications

with high data volume or variable

requirements require an MLOps approach to

ensure scalability and efficient resource

management. In areas where data is dynamic

and requires continuous model education,

1 Corresponding author: PhD student, Ognjen Tomić,

Lola institute Kneza Viseslava 70a

Belgrade, Serbia
Email: ognjen.tomic@li.rs

mailto:ognjen.tomic@li.rs

PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET
-LITERATURE REVIEW-

MLOps is critical to keeping models up-to-

date and accurate. Introducing MLOps into

these contexts allows organizations to

effectively manage the complexity of

machine learning systems, ensure high levels

of performance, and adapt more quickly to

changes in the environment.

2.2. MLOps cycle

The MLOps cycle, or MLOps process, is a

continuous sequence of activities

implemented to develop, test, implement, and

maintain machine models over time.

Identification of the specific problem that the

machine model should solve (Figure 1).

Collection of relevant data necessary for

model training and evaluation. This phase

involves cleaning, transforming and

normalizing the data to make it suitable for

machine learning. Creating and training a

machine model using prepared data [3].

Here, different algorithms and parameters are

experimented with in order to achieve the best

possible accuracy. Evaluation of model

performance on separate data sets that were

not used during training. This includes

parameter validation and testing to ensure the

generalizability of the model. Integration of

the model into the real environment. Here,

MLOps practices are used to deploy the

model into production, including automated

processes for updating and rolling back old

versions when needed. Setting up a real-time

model performance monitoring system [4].

This enables the identification of potential

problems and performance degradation in

anticipation of a negative impact on users.

Continuous optimization of the model based

on new data and experiences. Updating the

model to maintain high accuracy and

adequately respond to changes in the

environment. The MLOps cycle is a dynamic

process that implies continuous attention,

adaptability and cooperation between

different teams in order to achieve and

maintain a high level of performance of

machine models in production [5].

Figure 1. MLOps cycle [9]

2. Elements of MLOps

Identification of key elements in MLOps,

including automation, model performance

monitoring:

Automation is a fundamental element of

MLOps, and its goal is to reduce human

intervention and accelerate all stages of

development, [6] implementation and

maintenance of machine learning models

(Figure 2).

1. Continuous integration (CI):

Implementation of CI/CD

(Continuous Integration/Continuous

Deployment) practices enables

automatic testing and integration of

new code into a shared repository.

This ensures a faster flow of the

development cycle.

2. Automating model training:

Creating processes that

automatically train models when

new data is delivered, while

monitoring performance and

adjusting models as needed.

3. Automation of deployment:

Automation of the process of

deploying the model to the

production environment, including

dependency management,

environment configuration and

resource monitoring.

4. Automation of performance

testing: Regular automated testing

of model performance to identify

problems and ensure constant

optimal functioning.

Figure 2. MLOps combination [9]

Monitoring model performance is critical to

ensuring sustainable and effective model

deployment in a real-world environment.

1. Monitor model quality metrics:

Continuously monitor key metrics,

such as accuracy, precision, and

responsiveness, to identify changes

in model performance.

2. Model health monitoring:

Continuous monitoring of model

health, including proactive

recognition of performance

degradation and alerts in case of

irregularities.

3. Analysis of the impact of data

changes: Monitoring how new data

affects the performance of the

model, thus ensuring the adaptation

of the model to the changed

conditions.

4. Resource Tracking: Track resources

consumed during model training and

implementation to optimize

efficiency and control costs.

3. Integrating MLOps into

software development

3.1. Contemporary challenges of software

development

Software development faces a number of

challenges, and the integration of MLOps

provides the opportunity to solve some of the

key problems in this area (Table 1):

Table 1. Contemporary challenges of

software development

Complexity of

current

development

processes

Challenge: Traditional

development processes

can be complex and

inefficient, especially

when it comes to

implementing machine

learning models.

MLOps solution: MLOps

enables the automation

and standardization of the

entire model life cycle,

simplifying the processes

from model training to its

implementation.[7] [9]

Lack of

coordination

between

development

and operations

teams

Challenge: Lack of

collaboration between

development and

operations teams can lead

to problems in

implementing and

maintaining the model.

MLOps solution: MLOps

integration creates a bridge

between development and

operations teams,

fostering collaboration

through shared tools and
processes. [9]

Lack of

transparency in

Challenge: Lack of clear

visibility into the lifecycle
of a model can lead to

PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET
-LITERATURE REVIEW-

3.2. MLOps integration steps

Integrating MLOps into software

development can significantly improve

efficiency, transparency and governance in

the development and implementation of

machine learning models, responding to

current challenges and improving the overall

process.

Integrating MLOps into existing software

development processes requires a carefully

planned implementation to ensure a smooth

transition and realize the desired benefits.

Here are the steps that are key to this

integration [9]

Detailed analysis of existing software

development processes to identify the correct

steps, resources and roles in the current

environment. Identification of key stages in

the software development life cycle where

MLOps could bring added value, e.g. in

training, testing, implementation and

maintenance of the model. Conduct training

for team members on MLOps concepts, tools

to be used and changes to be introduced in the

work process. Selecting appropriate tools and

platforms to support MLOps, including tools

for version control, automation, monitoring

and resource management. Setting standards

and guidelines for managing models, data,

and code to ensure consistency and ease of

maintenance. Implement continuous

integration (CI) and continuous delivery (CD)

into the model training process to ensure

automatic model verification, testing, and

deployment. Introducing a model

performance monitoring system to

automatically detect model degradation and

respond to changes in a timely manner.

Implementation of a configuration

management system to enable efficient

management of model settings and

environment configuration. Conduct testing

and validation on the integrated MLOps

system to ensure functionality and quality.

Defining the model maintenance process,

including scheduled updates, tracking

changes and responding to user needs.

Introducing mechanisms for continuous

improvement of the integrated MLOps

system, taking into account feedback from the

team and end users. Monitoring the

performance of the integrated MLOps system

to assess effectiveness and take corrective

action as needed.

the life cycle of

the model

problems in monitoring

performance and

identifying the need for

updates.

MLOps Solution: MLOps

provides tools to track all

stages of a model's life,

from training to

implementation, ensuring
transparency and change

tracking.[7] [9]

Difficulties in

managing

different

versions of the

model

Challenge: Managing

multiple versions of a

model can be a challenge,

especially when a large

number of models need to

be updated and

maintained.

MLOps Solution: MLOps

enables simple model

versioning, supporting

easy update, pull, and

change tracking.[8]

Lack of

reproducibility

in model

training

Challenge: Lack of

reproducibility in the

model training process can

lead to problems in

validation and retraining.

MLOps Solution: MLOps

provides an environment

that enables accurate

reproducible training of

models, thus ensuring
consistency and validity of

results.

Integrating MLOps into existing software

development processes requires a systematic

and careful approach. These steps are the

foundation for successful integration,

ensuring consistency, transparency and

efficiency in the management of machine

learning models.

3.3. Benefits of integration

Integrating MLOps into the software

development process can bring a number of

significant benefits related to various aspects,

including speeding up development time,

improving model quality, and facilitating

model lifecycle management.

1. Acceleration of development time

Benefit: The implementation of MLOps

enables the automation of key phases of

model development, including training,

testing and implementation. This leads to an

acceleration of the entire development cycle,

reducing the time it takes from

conceptualization to product on the market.

2. Improvement of model quality

Benefit: MLOps provides frameworks for

continuous testing and real-time monitoring

of model performance. This allows problems

to be identified and resolved before they

affect users, resulting in improved model

quality.

3. Easier model lifecycle

management

Benefit: MLOps integration simplifies the

management of all phases of the model life

cycle, including training, testing,

implementation and maintenance. This makes

it easier for teams to effectively manage

changes, versions and configuration of

models. [13]

4. Increasing reproducibility

Benefit: MLOps enables accurate

reproduction of the environment during

model training, ensuring consistency of

results and enabling easier validation and

reproduction of experiments.

5. More efficient use of resources

Benefit: Automation enables better

management of resources during model

training and implementation, leading to more

efficient use of infrastructure and cost

reduction.

6. Improvement of team

cooperation

Benefit: MLOps supports integration between

different teams, including development,

operations and data exploration. This

improves collaboration, reduces gaps

between teams and contributes to better

understanding and management of models.

7. Faster response to changes

Benefit: Integrating MLOps enables teams to

react more quickly to changes in data,

environment or customer requirements,

ensuring agility in adapting models.

8. Reducing the risk of problems in

the production environment

Benefit: Continuous monitoring and testing

of model performance helps identify potential

problems before they affect the production

environment, reducing the risk of adverse

incidents.[14]

9. Improving data security

Benefit: MLOps includes mechanisms for

managing data security during the entire

lifecycle of the model, providing additional

security when working with sensitive

information.

10. Transparency and monitoring of

changes

Benefit: MLOps enables tracking of all

changes in models and code, ensuring

transparency in the development process and

enabling better change management.

Overall, the integration of MLOps brings a

number of key benefits that improve the

PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET
-LITERATURE REVIEW-

efficiency, quality and management of

machine learning models throughout their

lifecycle.

4. Case study: Integrating MLOps

into analytics application

development

4.1. Databricks

One example of a data analytics application

that can serve as a foundation for MLOps

integration is the Databricks Platform (Figure

3).

Figure 3. Databricks platform

Databricks provides a comprehensive

ecosystem for data analytics and machine

learning, offering tools for working with large

data sets and support for integration with

MLOps practices.

Machine learning support: Databricks

provides support for popular machine

learning libraries like Apache Spark MLlib

and scikit-learn. Also, it enables easy

training, evaluation and implementation of

the model directly in the platform.

Model training automation: Databricks makes

it easy to automate the model training process

through the use of scripts and notebooks. This

allows easy integration with CI/CD tools and

setting up automatic training processes.

Model performance monitoring: Databricks

provides the ability to monitor model

performance through built-in libraries and

integration with monitoring tools such as

MLflow. This allows the team to monitor

metrics and identify the need to optimize the

model.

Integration with MLOps tools: Databricks

can be easily integrated with MLOps tools

like Apache Airflow, Jenkins, or Azure

DevOps, enabling automation, monitoring,

and management throughout the model

lifecycle.

Scalability and resilience: The Databricks

Platform is scalable and adaptable, which

makes it suitable for working with large data

sets and complex analyses. This scalability is

essential for model management in a

production environment.

Openness to integration: Databricks supports

working with different data sources and

formats, and also allows easy integration with

various data warehouses, whether they are in

the cloud or on-premises.

This example illustrates how Databricks can

serve as a solid foundation for MLOps

integration, providing tools for data analysis

and machine learning, with support for

automation, performance monitoring, and

integration with MLOps practices.

4.2. Apache Zeppelin

Apache Zeppelin is another example of a data

analytics application that can serve as a

foundation for MLOps integration.

Figure 4. Apache Zeppelin [10]

Zeppelin is an open-source project designed

for interactive data analysis, visualization and

machine learning execution.

Interactivity and visualization: Zeppelin

provides an interactive environment that

supports multiple programming languages,

including Scala, Python, R, and SQL. This

enables analysts and data scientists to

effectively explore and visualize data.

Built-in machine learning tools: Zeppelin has

built-in machine learning libraries and tools,

including support for Apache Spark,

TensorFlow, and scikit-learn. This allows for

easy training and testing of models directly

within the Zeppelin environment. [10]

Support for continuous integration delivery

(CI/CD): Zeppelin can be integrated with

CI/CD tools like Jenkins, which enables

automation of model training, evaluation and

deployment processes.

Easy sharing and reproducibility: Zeppelin

allows easy sharing of analyzes and

experiments, and also saves session state.

This provides the ability to reproduce results

and share analytical results within the team.

Integration with MLOps platforms: Zeppelin

can be integrated with popular MLOps

platforms like MLflow, providing support for

tracking metrics, managing experiments and

implementing models.

Dynamic configuration: Zeppelin allows

dynamic configuration of the interpreter and

the environment, which is useful for adapting

the environment to the specific needs of

MLOps and the team.

Security and access management: Zeppelin

provides access management capabilities and

security mechanisms, which are important for

managing sensitive data and analytics.

Openness and flexibility: Zeppelin is an open-

source project with a large community of

users, which allows customization and

expansion of functionality according to the

needs of the team.

Zeppelin can serve as the foundation for

MLOps integration by providing analysts and

data scientists with an interactive

environment for working with data and

machine learning models, with support for

automation and performance monitoring.

PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET
-LITERATURE REVIEW-

4.3. KNIME

KNIME (Konstanz information miner)

Analytics platform is another powerful data

analysis application that can be used as the

basis for MLOps integration.

Figure 5. KNIME Konstanz Information

Miner [11]

KNIME provides visual programming,

allowing users to construct analytics

workflows without having to write code. [11]

Visual programming: KNIME enables users

to create analytical workflows by connecting

visual nodes, facilitating the construction of

complex data analysis and machine learning

models without the need for coding.

Extensive library of data analysis tools:

KNIME includes a rich library of nodes for

data analysis, statistics, and machine learning.

This provides flexibility in experimenting and

applying different methods and techniques.

Integration with various data sources:

KNIME supports integration with various

data sources, including SQL databases, CSV

files, Hadoop and others. This allows working

with different types of data and sources of

information.

Automation of workflows: KNIME facilitates

the automation of workflows, which is crucial

for the implementation of MLOps principles.

Users can set scheduled tasks, optimize

workflows and easily repeat analyses.

Integration with MLOps tools: KNIME is

integrative and can be easily connected to

MLOps platforms like MLflow, Kubeflow

and others. This allows tracking experiments,

managing models and applying MLOps

principles within the KNIME environment.

Model creation and sharing: KNIME enables

the creation, training and sharing of models

within workflows. This supports team

collaboration and allows tracking changes in

models over time.

Security and access control: KNIME provides

access management capabilities and the

implementation of security rules, providing

control over data and analytical workflows.

Openness and active community: KNIME is

an open-source platform with an active

community of users. This gives users the

opportunity to customize and extend

functionality according to specific needs.[11]

The KNIME analytics platform combines

powerful visual programming with a wide

range of data analysis tools, making it the

ideal foundation for integrating MLOps and

effectively managing machine learning

models.

4.4. RapidMiner

RapidMiner is an advanced data analysis

platform that allows users to easily build

analytical models and perform complex data

analysis.

This platform can serve as an excellent

foundation for MLOps integration, providing

support for automation, model performance

monitoring, and team collaboration. Here's

how RapidMiner meets the key features for

MLOps integration:[12]

Visual programming and data analysis:

RapidMiner uses visual programming that

allows users to construct analytical models

using a graphical interface without writing

code. This simplifies the process of creating

and understanding analytical workflows.

Support for machine learning and data

analysis: RapidMiner provides an extensive

library of tools and nodes for machine

learning and data analysis. These tools allow

users to apply various data analysis methods,

including machine learning models.[12]

Automating workflows: The platform

enables users to automate analytical

workflows, thereby reducing the need for

manual interventions. Automation

contributes to efficient model life cycle

management.

Integration with MLOps tools: RapidMiner

can be integrated with various MLOps tools,

including MLflow, Kubeflow and others.

This integration enables model performance

monitoring, experiment management and

easier implementation of MLOps principles.

Ease of sharing models and workflows:

RapidMiner allows users to easily share

models and workflows with team members.

This supports team collaboration and makes it

easier to work together on projects.

Model performance metrics tracking: The

platform allows users to track key model

performance metrics over time. This

functionality is essential for model evaluation

and optimization.

Scalability and efficiency: RapidMiner is

scalable and efficient in working with large

data sets, thus providing the ability to manage

models at different levels of complexity.

Openness and active community: RapidMiner

is also an active open-source project with a

vibrant community of users. This provides

users with the opportunity to learn, share

experiences and adapt the platform to specific

needs.

RapidMiner, with its intuitive visual

programming platform, is an excellent

example of an analytics application that can

serve as a foundation for MLOps integration

and lifecycle management of machine

learning models

5. Implementation of MLOps
Implementing MLOps in application

development involves a series of steps that

include planning, modeling, testing,

implementation, and maintenance. Below is a

detailed breakdown of the steps involved in

implementing MLOps for the example

applications we've previously discussed -

Databricks, Apache Zeppelin, KNIME

Analytics Platform, and RapidMiner. For

each application, the tools and techniques that

can be used are listed separately.

Databricks Platform

A. Defining MLOps objectives.

Tools: Databricks Workspace for defining

goals and team communication. Techniques:

Working in Databricks notebooks for

collaborative planning.) Identification of key

elements of the model development process.

B. Development of the model:

PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET
-LITERATURE REVIEW-

Using Databricks notebooks for

experimentation and model development.

Tools: Databricks notebooks, Apache Spark

MLlib, MLflow for model experimentation,

development and monitoring. Techniques:

Using Databricks experimental libraries for

model optimization and testing. Integration

with Apache Spark MLlib for machine

learning. Use MLflow to track experiments,

manage models, and log metrics.

C. Testing:

Automated model testing and performance

validation through MLflow. Tools: MLflow

for automatic tracking of test results and

performance evaluation. Techniques:

Integrating automated tests into the

Databricks environment.) Monitoring of test

results and evaluations.

D. Implementation:

Automation of the model implementation

process. Tools: Jenkins for deployment

automation, Databricks API for integration

with CI/CD tools. Techniques: Setting

planned tasks for regular model

implementation.) Integration with CI/CD

tools (eg Jenkins) for continuous delivery.

E. Maintenance:

Monitoring model performance in production

with MLflow. Tools: MLflow for

monitoring model performance in production.

Techniques: Automated model updating via

MLflow tools. Automated model updating

based on new data

Apache Zeppelin

A. Planning:

Setting goals for MLOps integration into the

Zeppelin environment. Identification of key

features for model monitoring and

management. Tools: Apache Zeppelin for

setting goals and defining features for MLOps

integration. Techniques: Using Zeppelin

notebooks for collaborative team planning.

B. Development of the Model:

Using Zeppelin notebooks to build and

experiment with models. Integration with

MLOps platforms like MLflow to track

experiments. Tools: Apache Zeppelin

notebooks, MLOps platforms like MLflow

for tracking experiments. Techniques: Using

the Zeppelin API to integrate with MLOps

tools.

C. Testing:

Implementation of automated tests for model

performance evaluation. Monitoring test

results directly in the Zeppelin environment.

Tools: Zeppelin notebooks for implementing

automated tests.Techniques: Track test

results directly in the Zeppelin environment.

D. Implementation:

Automated model deployment through

integration with CI/CD tools. Using the

Zeppelin API to integrate with MLOps tools.

Tools: Jenkins for deployment automation,

Zeppelin API for integration with CI/CD

tools. Techniques: Setting planned tasks for

regular implementation of the model.

E. Maintenance:

Model performance monitoring through

Zeppelin notebooks. Periodic model updating

and optimization. Tools: MLOps platforms

like MLflow for monitoring model

performance. Techniques: Periodic model

updating and optimization through the

Zeppelin environment.

KNIME Analytics Platform:888

A. Planning:

Defining MLOps objectives in the KNIME

environment. Identification of key

functionalities for monitoring and managing

models.

B. Development of the Model:

Creating analytical workflows for

development and experimentation.

Integration with MLOps tools like MLflow to

track metrics and experiments.

C. Testing:

Defining model performance tests within

KNIME workflows. Automated testing using

KNIME analytics nodes.

D. Implementation:

Automation of the implementation process

through integration with CI/CD tools. Using

KNIME Server to manage models in

production.

E. Maintenance:

Model performance monitoring through

KNIME Server and MLOps platforms.

Periodic model updating and optimization.

RapidMiner

A. Planning:

Setting goals for integrating MLOps into

RapidMiner. Identification of key

functionalities for model lifecycle

management.

B. Development of the model:

Using visual programming in RapidMiner

Studio to build models. Integration with

MLOps platforms like MLflow for tracking

experiments and models.

C. Testing:

Creation and implementation of model

performance tests within RapidMiner Studio.

Test automation using RapidMiner Server.

D. Implementation:

Automation of model implementation

through integration with CI/CD tools. Using

RapidMiner Server to manage models in

production.

E. Maintenance:

Model performance monitoring through

RapidMiner Server and MLOps platforms.

Periodic model updating and optimization.

6. Conclusion
Results of this research confirm that the

application of MLOps is of critical

importance for the optimization of software

quality assurance in the analysis application

market. We hope that this case study will

serve as a basis for further research and

application of MLOps in various industrial

contexts, thus contributing to the innovation

and advancement of software development

worldwide. This case study highlights the key

benefits of implementing MLOps, including

faster iterations, real-time error detection, and

continuous software optimization. Through

this integration of tools and practices, we

emphasize the importance of continuous

evolution and adaptation in order to achieve a

competitive advantage in the analytics

applications market. [13], [14], [15].

References:

PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE

ANALYTICS APPLICATION MARKET
-LITERATURE REVIEW-

[1] Kreuzberger D., Kuhl N., Hirschl S., (2023). Machine Learning Operations (MLOps):

Overview, Definition, and Architecture. Vol. 11, 31866-31879. doi:

0.1109/ACCESS.2023.3262138

[2] Subramanya R., Sierla S. Vyatkin V., (2022). From DevOps to MLOps: Overview and

Application to Electricity Market Forecasting. Vol. 12 (9851), 1-31. doi:

10.3390/app12199851

[3] Zhengxin F., Zhang Y., Jingyu, Yue L., Yuechen M., Qinghua L., Xiwei X., Jeff W., Chen

W., Shuai Z., Shiping C., (2020). MLOps Spanning Whole Machine Learning Life Cycle: A

Survey 2-27.

[4] Nipuni Hewage, Dulani Meedeniya, (2022). Machine Learning Operations: A Survey On

Mlops Tool Support. 1-12.

[5] Treveil M., (2021). Instroducing MLOps- How to scale ML in the enterprise. 3-159.

[6] Meenu J., Olsson H., Bosch J., (2021). Towards MLOps: A Framework and Maturity Model.

1-8.

[7] Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media.

[8] Satvik Garg, Pradyumn Pundir, Geetanjali Rathee, P.K. Gupta, Somya Garg, Saransh

Ahlawat, (2022). On Continuous Integration / Continuous Delivery for Automated

Deployment of Machine Learning Models using MLOps. 1-4.

[9] Georgios Symeonidis, Evangelos Nerantzis, Apostolos Kazakis, George A. Papakostas,

(2022), MLOps - Definitions, Tools and Challenges, pp:1-8.

Links:

[10] Apache Zeppelin Documentation. (https://zeppelin.apache.org/)

[11] KNIME Documentation. (https://www.knime.com/knime)

[12] RapidMiner Documentation. (https://docs.rapidminer.com/)

[13] Microsoft Azure Documentation. (https://docs.microsoft.com/en-us/azure/)

[14] Google Cloud Documentation. (https://cloud.google.com/docs)

[15] Amazon Web Services Documentation. (https://aws.amazon.com/documentation/)

PhD student, Ognjen Tomić
Lola institute,

Belgrade,

Serbia

ognjen.tomic@li.rs

https://zeppelin.apache.org/
https://www.knime.com/knime
https://docs.rapidminer.com/
https://docs.microsoft.com/en-us/azure/
https://cloud.google.com/docs
https://aws.amazon.com/documentation/
mailto:ognjen.tomic@li.rs

