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APPLYING MLOPS TO OPTIMIZE 

SOFTWARE QUALITY ASSURANCE IN THE 

ANALYTICS APPLICATION MARKET 
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Abstract: In this research, we explore the application of 

MLOps (Machine Learning Operations) as a strategy to 

optimize software quality assurance in the analytics 

application market. Using the MLOps approach, we integrate 

tools such as Databricks, Apache Zeppelin, KNIME and 

RapidMiner to automate the testing, analysis and optimization 

processes of software applications. 

This case study illustrates specific examples of the application 

of MLOps in the context of analytics applications, but also 

provides a basis for understanding the broader range of 

opportunities that MLOps provides in improving software 

quality assurance in the marketplace. Through this integration 

of tools and practices, we explore how MLOps can be a key 

factor in achieving competitive advantage and long-term 

success in the analytics software market. 

Keywords: Machine learning, analystics app., software, 

quality assurance 

 

1. Introduction 
 

1.1. The basics of MLOps 
 

MLOps application context refers to the 

situations and circumstances in which 

MLOps, or machine learning operations 

management practices, are applied to ensure 

effective implementation, maintenance, and 

improvement of machine learning (ML) 

systems [1]. MLOps is particularly important 

in environments where a diverse range of 

machine models are used. This context 

includes situations where image recognition, 

natural language processing or regression 

models are present, with the need to manage 

their diversity and complexity. In software 

 

development, MLOps is applied to integrate 

machine learning development with standard 

software processes. This includes version 

control, code management, testing and 

implementation. Situations where it is 

necessary to quickly adjust models or 

introduce new iterations require MLOps 

practices. This is especially true in areas 

where data changes frequently or where it is 

necessary to respond quickly to new 

requirements. MLOps is crucial in sectors 

where high standards are set for data security 

and regulatory compliance [2]. Applications 

with high data volume or variable 

requirements require an MLOps approach to 

ensure scalability and efficient resource 

management. In areas where data is dynamic 

and requires continuous model education, 
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MLOps is critical to keeping models up-to- 

date and accurate. Introducing MLOps into 

these contexts allows organizations to 

effectively manage the complexity of 

machine learning systems, ensure high levels 

of performance, and adapt more quickly to 

changes in the environment. 

 

2.2. MLOps cycle 

 
The MLOps cycle, or MLOps process, is a 

continuous sequence of activities 

implemented to develop, test, implement, and 

maintain machine models over time. 

Identification of the specific problem that the 

machine model should solve (Figure 1). 

Collection of relevant data necessary for 

model training and evaluation. This phase 

involves cleaning, transforming and 

normalizing the data to make it suitable for 

machine learning. Creating and training a 

machine model using prepared data [3]. 

Here, different algorithms and parameters are 

experimented with in order to achieve the best 

possible accuracy. Evaluation of model 

performance on separate data sets that were 

not used during training. This includes 

parameter validation and testing to ensure the 

generalizability of the model. Integration of 

the model into the real environment. Here, 

MLOps practices are used to deploy the 

model into production, including automated 

processes for updating and rolling back old 

versions when needed. Setting up a real-time 

model performance monitoring system [4]. 

This enables the identification of potential 

problems and performance degradation in 

anticipation of a negative impact on users. 

Continuous optimization of the model based 

on new data and experiences. Updating the 

model to maintain high accuracy and 

adequately respond to changes in the 

environment. The MLOps cycle is a dynamic 

process that implies continuous attention, 

adaptability and cooperation between 

different teams in order to achieve and 

maintain a high level of performance of 

machine models in production [5]. 

 
 

Figure 1. MLOps cycle [9] 

 

2. Elements of MLOps 

Identification of key elements in MLOps, 

including automation, model performance 

monitoring: 

Automation is a fundamental element of 

MLOps, and its goal is to reduce human 

intervention and accelerate all stages of 

development, [6] implementation and 

maintenance of machine learning models 

(Figure 2). 

1. Continuous integration (CI): 

Implementation of CI/CD 

(Continuous Integration/Continuous 

Deployment) practices enables 

automatic testing and integration of 

new code into a shared repository. 

This ensures a faster flow of the 

development cycle. 

2. Automating model training: 

Creating processes that 

automatically train models when 

new data is delivered, while 

monitoring performance and 

adjusting models as needed. 

3. Automation of deployment: 

Automation of the process of 

deploying the model to the 

production environment, including 

dependency management, 

environment configuration and 

resource monitoring. 



 

 

4. Automation of performance 

testing: Regular automated testing 

of model performance to identify 

problems and ensure constant 

optimal functioning. 
 

Figure 2. MLOps combination [9] 

 
Monitoring model performance is critical to 

ensuring sustainable and effective model 

deployment in a real-world environment. 

 
1. Monitor model quality metrics: 

Continuously monitor key metrics, 

such as accuracy, precision, and 

responsiveness, to identify changes 

in model performance. 

2. Model health monitoring: 

Continuous monitoring of model 

health, including proactive 

recognition of performance 

degradation and alerts in case of 

irregularities. 

3. Analysis of the impact of data 

changes: Monitoring how new data 

affects the performance of the 

model, thus ensuring the adaptation 

of the model to the changed 

conditions. 

4. Resource Tracking: Track resources 

consumed during model training and 

implementation to optimize 

efficiency and control costs. 

 
 

3. Integrating MLOps into 

software development 
 

3.1. Contemporary challenges of software 

development 

 
Software development faces a number of 

challenges, and the integration of MLOps 

provides the opportunity to solve some of the 

key problems in this area (Table 1): 

Table 1. Contemporary challenges of 

software development 

Complexity of 

current 

development 

processes 

Challenge: Traditional 

development processes 

can be complex and 

inefficient, especially 

when it comes to 

implementing machine 

learning models. 

MLOps solution: MLOps 

enables the automation 

and standardization of the 

entire model life cycle, 

simplifying the processes 

from model training to its 

implementation.[7] [9] 

Lack of 

coordination 

between 

development 

and operations 

teams 

Challenge: Lack of 

collaboration between 

development and 

operations teams can lead 

to problems  in 

implementing and 

maintaining the model. 

MLOps solution: MLOps 

integration creates a bridge 

between development and 

operations teams, 

fostering collaboration 

through shared tools and 
processes. [9] 

Lack of 

transparency in 

Challenge: Lack of clear 

visibility into the lifecycle 
of a model can lead to 
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3.2. MLOps integration steps 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Integrating MLOps into software 

development can significantly improve 

efficiency, transparency and governance in 

the development and implementation of 

machine learning models, responding to 

current challenges and improving the overall 

process. 

Integrating MLOps into existing software 

development processes requires a carefully 

planned implementation to ensure a smooth 

transition and realize the desired benefits. 

Here are the steps that are key to this 

integration [9] 
 

Detailed analysis of existing software 

development processes to identify the correct 

steps, resources and roles in the current 

environment. Identification of key stages in 

the software development life cycle where 

MLOps could bring added value, e.g. in 

training, testing, implementation and 

maintenance of the model. Conduct training 

for team members on MLOps concepts, tools 

to be used and changes to be introduced in the 

work process. Selecting appropriate tools and 

platforms to support MLOps, including tools 

for version control, automation, monitoring 

and resource management. Setting standards 

and guidelines for managing models, data, 

and code to ensure consistency and ease of 

maintenance. Implement continuous 

integration (CI) and continuous delivery (CD) 

into the model training process to ensure 

automatic model verification, testing, and 

deployment. Introducing a model 

performance monitoring system to 

automatically detect model degradation and 

respond to changes in a timely manner. 

Implementation of a configuration 

management system to enable efficient 

management of model settings and 

environment configuration. Conduct testing 

and validation on the integrated MLOps 

system to ensure functionality and quality. 

Defining the model maintenance process, 

including scheduled updates, tracking 

changes and responding to user needs. 

Introducing mechanisms for continuous 

improvement of the integrated MLOps 

system, taking into account feedback from the 

team and end users. Monitoring the 

performance of the integrated MLOps system 

to assess effectiveness and take corrective 

action as needed. 

the life cycle of 

the model 

problems in monitoring 

performance and 

identifying the need for 

updates. 

MLOps Solution: MLOps 

provides tools to track all 

stages of a model's life, 

from training to 

implementation, ensuring 
transparency and change 

tracking.[7] [9] 

Difficulties in 

managing 

different 

versions of the 

model 

Challenge: Managing 

multiple versions of a 

model can be a challenge, 

especially when a large 

number of models need to 

be updated and 

maintained. 

MLOps Solution: MLOps 

enables simple model 

versioning, supporting 

easy update, pull, and 

change tracking.[8] 

Lack of 

reproducibility 

in model 

training 

Challenge:   Lack  of 

reproducibility   in the 

model training process can 

lead to  problems   in 

validation and retraining. 

MLOps Solution: MLOps 

provides an environment 

that  enables   accurate 

reproducible training of 

models, thus  ensuring 
consistency and validity of 

results. 

 



 

 

Integrating MLOps into existing software 

development processes requires a systematic 

and careful approach. These steps are the 

foundation for successful integration, 

ensuring consistency, transparency and 

efficiency in the management of machine 

learning models. 

 

3.3. Benefits of integration 

Integrating MLOps into the software 

development process can bring a number of 

significant benefits related to various aspects, 

including speeding up development time, 

improving model quality, and facilitating 

model lifecycle management. 
 

1. Acceleration of development time 
 

Benefit: The implementation of MLOps 

enables the automation of key phases of 

model development, including training, 

testing and implementation. This leads to an 

acceleration of the entire development cycle, 

reducing the time it takes from 

conceptualization to product on the market. 
 

2. Improvement of model quality 

Benefit: MLOps provides frameworks for 

continuous testing and real-time monitoring 

of model performance. This allows problems 

to be identified and resolved before they 

affect users, resulting in improved model 

quality. 
 

3. Easier model lifecycle 

management 

Benefit: MLOps integration simplifies the 

management of all phases of the model life 

cycle, including training, testing, 

implementation and maintenance. This makes 

it easier for teams to effectively manage 

changes, versions and configuration of 

models. [13] 
 

4. Increasing reproducibility 

Benefit:  MLOps enables accurate 

reproduction of the environment during 

model  training,  ensuring  consistency  of 

results and enabling easier validation and 

reproduction of experiments. 
 

5. More efficient use of resources 

Benefit:  Automation enables better 

management of resources during model 

training and implementation, leading to more 

efficient use of infrastructure and cost 

reduction. 
 

6. Improvement of team 

cooperation 

Benefit: MLOps supports integration between 

different teams, including development, 

operations and data exploration. This 

improves collaboration, reduces gaps 

between teams and contributes to better 

understanding and management of models. 
 

7. Faster response to changes 

Benefit: Integrating MLOps enables teams to 

react more quickly to changes in data, 

environment or customer requirements, 

ensuring agility in adapting models. 
 

8. Reducing the risk of problems in 

the production environment 

Benefit: Continuous monitoring and testing 

of model performance helps identify potential 

problems before they affect the production 

environment, reducing the risk of adverse 

incidents.[14] 
 

9. Improving data security 

Benefit: MLOps includes mechanisms for 

managing data security during the entire 

lifecycle of the model, providing additional 

security when working with sensitive 

information. 
 

10. Transparency and monitoring of 

changes 

 

Benefit: MLOps enables tracking of all 

changes in models and code, ensuring 

transparency in the development process and 

enabling better change management. 

 

Overall, the integration of MLOps brings a 

number of key benefits that improve the 
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efficiency, quality and management of 

machine learning models throughout their 

lifecycle. 

 

4. Case study: Integrating MLOps 

into analytics application 

development 

 

4.1. Databricks 

One example of a data analytics application 

that can serve as a foundation for MLOps 

integration is the Databricks Platform (Figure 

3). 
 

 

Figure 3. Databricks platform 
 

Databricks provides a comprehensive 

ecosystem for data analytics and machine 

learning, offering tools for working with large 

data sets and support for integration with 

MLOps practices. 
 

Machine learning support: Databricks 

provides support for popular machine 

learning libraries like Apache Spark MLlib 

and scikit-learn. Also, it enables easy 

training, evaluation and implementation of 

the model directly in the platform. 
 

Model training automation: Databricks makes 

it easy to automate the model training process 

through the use of scripts and notebooks. This 

allows easy integration with CI/CD tools and 

setting up automatic training processes. 
 

Model performance monitoring: Databricks 

provides the ability to monitor model 

performance through built-in libraries and 

integration with monitoring tools such as 

MLflow. This allows the team to monitor 

metrics and identify the need to optimize the 

model. 
 

Integration with MLOps tools: Databricks 

can be easily integrated with MLOps tools 

like Apache Airflow, Jenkins, or Azure 

DevOps, enabling automation, monitoring, 

and management throughout the model 

lifecycle. 
 

Scalability and resilience: The Databricks 

Platform is scalable and adaptable, which 

makes it suitable for working with large data 

sets and complex analyses. This scalability is 

essential for model management in a 

production environment. 
 

Openness to integration: Databricks supports 

working with different data sources and 

formats, and also allows easy integration with 

various data warehouses, whether they are in 

the cloud or on-premises. 
 

This example illustrates how Databricks can 

serve as a solid foundation for MLOps 

integration, providing tools for data analysis 

and machine learning, with support for 

automation, performance monitoring, and 

integration with MLOps practices. 



 

 

4.2. Apache Zeppelin 

 
Apache Zeppelin is another example of a data 

analytics application that can serve as a 

foundation for MLOps integration. 
 

Figure 4. Apache Zeppelin [10] 

 

Zeppelin is an open-source project designed 

for interactive data analysis, visualization and 

machine learning execution. 

 

Interactivity and visualization: Zeppelin 

provides an interactive environment that 

supports multiple programming languages, 

including Scala, Python, R, and SQL. This 

enables analysts and data scientists to 

effectively explore and visualize data. 

 

Built-in machine learning tools: Zeppelin has 

built-in machine learning libraries and tools, 

including support for Apache Spark, 

TensorFlow, and scikit-learn. This allows for 

easy training and testing of models directly 

within the Zeppelin environment. [10] 

 

Support for continuous integration delivery 

(CI/CD): Zeppelin can be integrated with 

CI/CD tools like Jenkins, which enables 

automation of model training, evaluation and 

deployment processes. 

 

Easy sharing and reproducibility: Zeppelin 

allows easy sharing of analyzes and 

experiments, and also saves session state. 

This provides the ability to reproduce results 

and share analytical results within the team. 

 

Integration with MLOps platforms: Zeppelin 

can be integrated with popular MLOps 

platforms like MLflow, providing support for 

tracking metrics, managing experiments and 

implementing models. 

 
Dynamic configuration: Zeppelin allows 

dynamic configuration of the interpreter and 

the environment, which is useful for adapting 

the environment to the specific needs of 

MLOps and the team. 

 

Security and access management: Zeppelin 

provides access management capabilities and 

security mechanisms, which are important for 

managing sensitive data and analytics. 

 

Openness and flexibility: Zeppelin is an open- 

source project with a large community of 

users, which allows customization and 

expansion of functionality according to the 

needs of the team. 

 

Zeppelin can serve as the foundation for 

MLOps integration by providing analysts and 

data scientists with an interactive 

environment for working with data and 

machine learning models, with support for 

automation and performance monitoring. 
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4.3. KNIME 

 
KNIME (Konstanz information miner) 

Analytics platform is another powerful data 

analysis application that can be used as the 

basis for MLOps integration. 

 

 

 

 

 

 

Figure 5. KNIME Konstanz Information 

Miner [11] 

 

KNIME provides visual programming, 

allowing users to construct analytics 

workflows without having to write code. [11] 

 

Visual programming: KNIME enables users 

to create analytical workflows by connecting 

visual nodes, facilitating the construction of 

complex data analysis and machine learning 

models without the need for coding. 

 

Extensive library of data analysis tools: 

KNIME includes a rich library of nodes for 

data analysis, statistics, and machine learning. 

This provides flexibility in experimenting and 

applying different methods and techniques. 

 

Integration with various data sources: 

KNIME supports integration with various 

data sources, including SQL databases, CSV 

files, Hadoop and others. This allows working 

with different types of data and sources of 

information. 

Automation of workflows: KNIME facilitates 

the automation of workflows, which is crucial 

for the implementation of MLOps principles. 

Users can set scheduled tasks, optimize 

workflows and easily repeat analyses. 

 

Integration with MLOps tools: KNIME is 

integrative and can be easily connected to 

MLOps platforms like MLflow, Kubeflow 

and others. This allows tracking experiments, 

managing models and applying MLOps 

principles within the KNIME environment. 

 

Model creation and sharing: KNIME enables 

the creation, training and sharing of models 

within workflows. This supports team 

collaboration and allows tracking changes in 

models over time. 

 

Security and access control: KNIME provides 

access management capabilities and the 

implementation of security rules, providing 

control over data and analytical workflows. 

 

Openness and active community: KNIME is 

an open-source platform with an active 

community of users. This gives users the 

opportunity to customize and extend 

functionality according to specific needs.[11] 

 

The KNIME analytics platform combines 

powerful visual programming with a wide 

range of data analysis tools, making it the 

ideal foundation for integrating MLOps and 

effectively managing machine learning 

models. 



 

 

4.4. RapidMiner 

RapidMiner is an advanced data analysis 

platform that allows users to easily build 

analytical models and perform complex data 

analysis. 

 

This platform can serve as an excellent 

foundation for MLOps integration, providing 

support for automation, model performance 

monitoring, and team collaboration. Here's 

how RapidMiner meets the key features for 

MLOps integration:[12] 

 

Visual programming and data analysis: 

RapidMiner uses visual programming that 

allows users to construct analytical models 

using a graphical interface without writing 

code. This simplifies the process of creating 

and understanding analytical workflows. 

 

Support for machine learning and data 

analysis: RapidMiner provides an extensive 

library of tools and nodes for machine 

learning and data analysis. These tools allow 

users to apply various data analysis methods, 

including machine learning models.[12] 

 

Automating workflows: The platform 

enables users to automate analytical 

workflows, thereby reducing the need for 

manual interventions. Automation 

contributes to efficient model life cycle 

management. 

 

Integration with MLOps tools: RapidMiner 

can be integrated with various MLOps tools, 

including MLflow, Kubeflow and others. 

This integration enables model performance 

monitoring, experiment management and 

easier implementation of MLOps principles. 

 

Ease of sharing models and workflows: 

RapidMiner allows users to easily share 

models and workflows with team members. 

This supports team collaboration and makes it 

easier to work together on projects. 

 

Model performance metrics tracking: The 

platform allows users to track key model 

performance metrics over time. This 

functionality is essential for model evaluation 

and optimization. 

 

Scalability and efficiency: RapidMiner is 

scalable and efficient in working with large 

data sets, thus providing the ability to manage 

models at different levels of complexity. 

 

Openness and active community: RapidMiner 

is also an active open-source project with a 

vibrant community of users. This provides 

users with the opportunity to learn, share 

experiences and adapt the platform to specific 

needs. 

 

RapidMiner, with its intuitive visual 

programming platform, is an excellent 

example of an analytics application that can 

serve as a foundation for MLOps integration 

and lifecycle management of machine 

learning models 

 
 

5. Implementation of MLOps 
Implementing  MLOps in application 

development involves a series of steps that 

include planning, modeling,   testing, 

implementation, and maintenance. Below is a 

detailed breakdown of the steps involved in 

implementing MLOps for the example 

applications we've previously discussed - 

Databricks, Apache  Zeppelin,  KNIME 

Analytics Platform, and RapidMiner. For 

each application, the tools and techniques that 

can be used are listed separately. 
 

Databricks Platform 
 

A. Defining MLOps objectives. 
 

Tools: Databricks Workspace for defining 

goals and team communication. Techniques: 

Working in Databricks notebooks for 

collaborative planning.) Identification of key 

elements of the model development process. 
 

B. Development of the model: 
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Using Databricks notebooks for 

experimentation and model development. 

Tools: Databricks notebooks, Apache Spark 

MLlib, MLflow for model experimentation, 

development and monitoring. Techniques: 

Using Databricks experimental libraries for 

model optimization and testing. Integration 

with Apache Spark MLlib for machine 

learning. Use MLflow to track experiments, 

manage models, and log metrics. 
 

C. Testing: 
 

Automated model testing and performance 

validation through MLflow. Tools: MLflow 

for automatic tracking of test results and 

performance evaluation. Techniques: 

Integrating automated tests into the 

Databricks environment.) Monitoring of test 

results and evaluations. 
 

D. Implementation: 
 

Automation of the model implementation 

process. Tools: Jenkins for deployment 

automation, Databricks API for integration 

with CI/CD tools. Techniques: Setting 

planned tasks for regular model 

implementation.) Integration with CI/CD 

tools (eg Jenkins) for continuous delivery. 
 

E. Maintenance: 
 

Monitoring model performance in production 

with MLflow. Tools: MLflow for 

monitoring model performance in production. 

Techniques: Automated model updating via 

MLflow tools. Automated model updating 

based on new data 
 

Apache Zeppelin 
 

A. Planning: 
 

Setting goals for MLOps integration into the 

Zeppelin environment. Identification of key 

features for model monitoring and 

management. Tools: Apache Zeppelin for 

setting goals and defining features for MLOps 

integration. Techniques: Using Zeppelin 

notebooks for collaborative team planning. 
 

B. Development of the Model: 
 

Using Zeppelin notebooks to build and 

experiment with models. Integration with 

MLOps platforms like MLflow to track 

experiments. Tools: Apache Zeppelin 

notebooks, MLOps platforms like MLflow 

for tracking experiments. Techniques: Using 

the Zeppelin API to integrate with MLOps 

tools. 
 

C. Testing: 
 

Implementation of automated tests for model 

performance evaluation. Monitoring test 

results directly in the Zeppelin environment. 

Tools: Zeppelin notebooks for implementing 

automated tests.Techniques: Track test 

results directly in the Zeppelin environment. 
 

D. Implementation: 
 

Automated model deployment through 

integration with CI/CD tools. Using the 

Zeppelin API to integrate with MLOps tools. 

Tools: Jenkins for deployment automation, 

Zeppelin API for integration with CI/CD 

tools. Techniques: Setting planned tasks for 

regular implementation of the model. 
 

E. Maintenance: 
 

Model performance monitoring through 

Zeppelin notebooks. Periodic model updating 

and optimization. Tools: MLOps platforms 

like MLflow for monitoring model 

performance. Techniques: Periodic model 

updating and optimization through the 

Zeppelin environment. 
 

KNIME Analytics Platform:888 

 

A. Planning: 

 

Defining MLOps objectives in the KNIME 

environment. Identification of key 

functionalities for monitoring and managing 



 

 

models. 

 

B. Development of the Model: 

 

Creating analytical workflows for 

development and experimentation. 

Integration with MLOps tools like MLflow to 

track metrics and experiments. 

 

C. Testing: 

 

Defining model performance tests within 

KNIME workflows. Automated testing using 

KNIME analytics nodes. 

 

D. Implementation: 

 

Automation of the implementation process 

through integration with CI/CD tools. Using 

KNIME Server to manage models in 

production. 

 

E. Maintenance: 

 

Model performance monitoring through 

KNIME Server and MLOps platforms. 

Periodic model updating and optimization. 

 

RapidMiner 

 

A. Planning: 

 

Setting goals for integrating MLOps into 

RapidMiner. Identification of key 

functionalities for model lifecycle 

management. 

 

B. Development of the model: 

 

Using visual programming in RapidMiner 

Studio to build models. Integration with 

MLOps platforms like MLflow for tracking 

experiments and models. 

 
C. Testing: 

 

Creation and implementation of model 

performance tests within RapidMiner Studio. 

Test automation using RapidMiner Server. 

 

D. Implementation: 

 

Automation of model implementation 

through integration with CI/CD tools. Using 

RapidMiner Server to manage models in 

production. 

 

E. Maintenance: 

 

Model performance monitoring through 

RapidMiner Server and MLOps platforms. 

Periodic model updating and optimization. 

 

6. Conclusion 
Results of this research confirm that the 

application of MLOps is of critical 

importance for the optimization of software 

quality assurance in the analysis application 

market. We hope that this case study will 

serve as a basis for further research and 

application of MLOps in various industrial 

contexts, thus contributing to the innovation 

and advancement of software development 

worldwide. This case study highlights the key 

benefits of implementing MLOps, including 

faster iterations, real-time error detection, and 

continuous software optimization. Through 

this integration of tools and practices, we 

emphasize the importance of continuous 

evolution and adaptation in order to achieve a 

competitive advantage in the analytics 

applications market. [13], [14], [15]. 

 

 

 

References: 



PhD student, Ognjen Tomić, APPLYING MLOPS TO OPTIMIZE SOFTWARE QUALITY ASSURANCE IN THE 

ANALYTICS APPLICATION MARKET 
-LITERATURE REVIEW- 

 

 

[1] Kreuzberger D., Kuhl N., Hirschl S., (2023). Machine Learning Operations (MLOps): 

Overview, Definition, and Architecture. Vol. 11, 31866-31879. doi: 

0.1109/ACCESS.2023.3262138 

[2] Subramanya R., Sierla S. Vyatkin V., (2022). From DevOps to MLOps: Overview and 

Application to Electricity Market Forecasting. Vol. 12 (9851), 1-31. doi: 

10.3390/app12199851 

[3] Zhengxin F., Zhang Y., Jingyu, Yue L., Yuechen M., Qinghua L., Xiwei X., Jeff W., Chen 

W., Shuai Z., Shiping C., (2020). MLOps Spanning Whole Machine Learning Life Cycle: A 

Survey 2-27. 

[4] Nipuni Hewage, Dulani Meedeniya, (2022). Machine Learning Operations: A Survey On 

Mlops Tool Support. 1-12. 

[5] Treveil M., (2021). Instroducing MLOps- How to scale ML in the enterprise. 3-159. 

[6] Meenu J., Olsson H., Bosch J., (2021). Towards MLOps: A Framework and Maturity Model. 

1-8. 

[7] Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media. 

[8] Satvik Garg, Pradyumn Pundir, Geetanjali Rathee, P.K. Gupta, Somya Garg, Saransh 

Ahlawat, (2022). On Continuous Integration / Continuous Delivery for Automated 

Deployment of Machine Learning Models using MLOps. 1-4. 

[9] Georgios Symeonidis, Evangelos Nerantzis, Apostolos Kazakis, George A. Papakostas, 

(2022), MLOps - Definitions, Tools and Challenges, pp:1-8. 

Links: 

[10] Apache Zeppelin Documentation. (https://zeppelin.apache.org/) 

[11] KNIME Documentation. (https://www.knime.com/knime) 

[12] RapidMiner Documentation. (https://docs.rapidminer.com/) 

[13] Microsoft Azure Documentation. (https://docs.microsoft.com/en-us/azure/) 

[14] Google Cloud Documentation. (https://cloud.google.com/docs) 

[15] Amazon Web Services Documentation. (https://aws.amazon.com/documentation/) 

 
 

PhD student, Ognjen Tomić 
Lola institute, 

Belgrade, 

Serbia 

ognjen.tomic@li.rs 

 

 

 
 

https://zeppelin.apache.org/
https://www.knime.com/knime
https://docs.rapidminer.com/
https://docs.microsoft.com/en-us/azure/
https://cloud.google.com/docs
https://aws.amazon.com/documentation/
mailto:ognjen.tomic@li.rs

